Asst. 4: Palindrome parsing

Preparation

Familiarity with the following textbook sections and lectures will help you complete the assign-
ment. You are also expected to attempt the exercises below before beginning the assignment. This
assignment is intended to be done with a partner!

Textbook sections

o 4.3, 4.4
e 52,53, 5.6

Most relevant lectures

e L8 L9

Exercises

1. Read through the entire assignment!

2. What is a palindrome? If you don’t know, look it up. Google is your friend.
Write an algorithm to solve the Part A: Two-character problem.

Write an algorithm to solve the Part B: Digits only problem.

ook W

Using the algorithm you just wrote as a starting point, write an algorithm (in pseudocode)
to solve the Part C: A real sentence problem. Trace through your algorithm to verify
whether “Madam, I'm Adam.” is accepted as a palindrome. (It should be.) You will be
required to submit this.

Introduction

You will be writing a program to test whether or not various user-entered Strings of text are
palindromes. You will start with a simpler version of this program, and gradually upgrade it until
you arrive at a full solution.

Pair programming

You are encouraged to work in pairs for this assignment, and learn the practice of pair programming!
Introduce yourself to somebody in the class and ask to work together. (If you truly insist on working
alone, you may.) Each pair should only submit one copy of the assignment (to one partner’s D2L
account), with both of your names and IDs in the files.

Pair programming works like this: The partners assume different roles. Once the algorithm has
been developed and agreed upon, one partner will be the programmer (sitting at the keyboard,
typing), and the other partner will observe what is typed. The second partner’s job is to catch
syntax/logical errors as they occur, and to make suggestions to the programming partner. Every so




Asst. 4: Palindrome parsing

often, the two partners should exchange roles. This technique has been proven to be very effective
at producing better code.

1 Specifications and instructions

A reminder of good practices

e Declare all your variables at the top of your main method, before any other statements.

e Use in-line comments carefully to explain what you are doing. Make sure each comment is
useful. There is no need to comment every line. Obvious comments like //prints output are
fairly useless. Concise but descriptive comments like //displays the largest number in numList
are much more useful. Especially when there is tricky logic involved, be sure to explain it
clearly.

e Comment your ending braces, i.e., //end outer while.

Align your ending braces with the opening if or public or while that begins that block.

Code inside a block should be uniformly indented by one level.

1.1 Part A: Two-character

In this part, you will write a program called PalChecker, which tests whether or not a two character
String is a palindrome. Do not proceed to Part B until Part A works properly.

Input: The user should input a two character String. Don’t worry about improper input.

Output: Sample console if the entered String is a palindrome:

Please enter two characters:
mm
You entered a palindrome!

Sample console if not:

Please enter two characters:
3f
Sorry, that is not a palindrome.

1.2 Part B: Digits only

In this part, you will modify PalChecker to test whether or not any integer is a palindrome. The
integer may have arbitrarily many digits. You will overwrite your earlier program. Do not proceed
to Part C until Part B works properly. Hint: You will need to use a loop in this part.

Input: The user should input an integer. Don’t worry about improper input. (Hint: You will
likely want to treat the input as a String.)

Output: Sample console if the entered integer is a palindrome:




Asst. 4: Palindrome parsing

Please enter an integer:
5489845
You entered a palindrome!

Sample console if not:

Please enter an integer:
57402
Sorry, that is not a palindrome.

1.3 Part C: A real sentence

In this part, you will create a new file called RobustPalChecker, which will test whether or not a
full sentence is a palindrome. Adding punctuation and spaces should not affect the result. Letters
in different cases should be considered equivalent.

1. Create a new file and save it as RobustPalChecker. java.
2. Copy-paste the code from Part B into this new file.

3. Modify RobustPalChecker to behave as explained below. You should only need to add/change
6-9 lines of code, so plan carefully before starting to code.

Input: The user should input any sentence (or word, or any sequence of characters). Note: Copy-
pasting will not yield the proper results in SciTE. The user should type the entire sentence.

Output: The program should accept any palindrome, ignoring punctuation, case, and spaces,
etc. Sample console if the entered sentence is a palindrome:

Please enter a sentence:
A man, a plan, a canal -- Panama!
You entered a palindrome!

Sample console if not:

Please enter a sentence:
On a dark, desert highway...
Sorry, that is not a palindrome.

Submission

Recall that submission instructions are in the Lab Guide. You are required to submit one .zip
folder (on one partner’s D2L) containing;:

e the properly documented and styled source code file PalChecker. java

e the properly documented and styled source code file RobustPalChecker. java

e a .txt or .pdf file containing your algorithm for RobustPalChecker

Make sure both partner’s names/IDs are on both files. Also, ensure that each partner saves a copy
of the finished code to their personal H: drive.




	Specifications and instructions
	Part A: Two-character
	Part B: Digits only
	Part C: A real sentence


